
Computing Square Roots using
Sequential Approximation
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If |en| < x then e2n � y and

y ≈ x2
n + 2xnen

which has the solution

en ≈
y − x2
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Convergence

Let a = xn/x so that xn = ax and

xn+1 =
y + a2y

2ax
=

1 + a2

2a
x

and therefore
xn+1

x
=

1 + a2

2a
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Since en = (1− a)x we see that

en+1

en
=

a− 1

2a

and therefore |en+1| < |en| for all a > 1/3.


