Computing Square Roots using Sequential Approximation Let x_n be an approximation to $x = \sqrt{y}$.

Our goal is to find some x_{n+1} which is an even better approximation, so that the sequence x_0, x_1, \ldots converges to \sqrt{y} .

Let x_n be an approximation to $x = \sqrt{y}$.

Our goal is to find some x_{n+1} which is an even better approximation, so that the sequence x_0, x_1, \ldots converges to \sqrt{y} .

Let e_n be the difference between x_n and $x = \sqrt{y}$, so that

$$y = x^{2}$$

$$y = (x_{n} + e_{n})^{2}$$

$$y = x_{n}^{2} + 2x_{n}e_{n} + e_{n}^{2}$$

Let x_n be an approximation to $x = \sqrt{y}$.

Our goal is to find some x_{n+1} which is an even better approximation, so that the sequence x_0, x_1, \ldots converges to \sqrt{y} .

Let e_n be the difference between x_n and $x = \sqrt{y}$, so that

$$y = x^{2}$$

$$y = (x_{n} + e_{n})^{2}$$

$$y = x_{n}^{2} + 2x_{n}e_{n} + e_{n}^{2}$$

If $|e_n| < x$ then $e_n^2 \ll y$ and

$$y \approx x_n^2 + 2x_n e_n$$

which has the solution

$$e_n \approx \frac{y - x_n^2}{2x_n}$$

Our new approximation is chosen as

$$x_{n+1} = x_n + \frac{y - x_n^2}{2x_n}$$

which can also be simplified as

$$x_{n+1} = \frac{y + x_n^2}{2x_n}$$

•

Our new approximation is chosen as

$$x_{n+1} = x_n + \frac{y - x_n^2}{2x_n}$$

which can also be simplified as

$$x_{n+1} = \frac{y + x_n^2}{2x_n}$$

•

Convergence

Let $a = x_n/x$ so that $x_n = ax$ and

and therefore

$$x_{n+1} = \frac{y + a^2 y}{2ax} = \frac{1 + a^2}{2a} x$$
$$\frac{x_{n+1}}{x} = \frac{1 + a^2}{2a} \quad .$$

Since $e_{n+1} = x - x_{n+1}$ we have

$$\frac{e_{n+1}}{x} = 1 - \frac{x_{n+1}}{x}$$
$$= 1 - \frac{1 + a^2}{2a}$$
$$= \frac{2a - 1 - a^2}{2a}$$
$$= \frac{-(1 - 2a + a^2)}{2a}$$
$$= \frac{-(1 - a)^2}{2a}$$
.

Since $e_{n+1} = x - x_{n+1}$ we have

e

$$\frac{n+1}{x} = 1 - \frac{x_{n+1}}{x}$$
$$= 1 - \frac{1+a^2}{2a}$$
$$= \frac{2a - 1 - a^2}{2a}$$
$$= \frac{-(1 - 2a + a^2)}{2a}$$
$$= \frac{-(1 - a)^2}{2a} \cdot$$

Since $e_n = (1 - a)x$ we see that

$$\frac{e_{n+1}}{e_n} = \frac{a-1}{2a}$$

and therefore $|e_{n+1}| < |e_n|$ for all a > 1/3.