Is the Square Root of 2 Irrational?

Preface

Theorem: The square of an even number is even.

Proof: If a is even then a = 2n for some integer n, and therefore

$$a^2 = (2n)^2 = 4n^2$$

which is evenly divisible by 2. Q.E.D.

Preface

Theorem: The square of an even number is even.

Proof: If a is even then a = 2n for some integer n, and therefore

$$a^2 = (2n)^2 = 4n^2$$

which is evenly divisible by 2. Q.E.D.

Theorem: The square of an odd number is odd.

Proof: If a is odd then a = 2n + 1 for some integer n, and therefore

$$a^2 = (2n+1)^2 = 4n^2 + 4n + 1$$

which is **not** evenly divisible by 2. Q.E.D.

If $\sqrt{2}$ were rational, then there must exist some integers p and q such that

$$\sqrt{2} = p/q \quad . \tag{1}$$

If $\sqrt{2}$ were rational, then there must exist some integers p and q such that

$$\sqrt{2} = p/q \quad . \tag{1}$$

Let us further assume that these are the smallest positive integers for which this is true. In other words, p and q have no common factors.

If $\sqrt{2}$ were rational, then there must exist some integers p and q such that

$$\sqrt{2} = p/q \quad . \tag{1}$$

Let us further assume that these are the smallest positive integers for which this is true. In other words, p and q have no common factors.

At least one of $\{p, q\}$ must be an odd number, otherwise p and q would have a common factor of 2.

If $\sqrt{2}$ were rational, then there must exist some integers p and q such that

$$\sqrt{2} = p/q \quad . \tag{1}$$

Let us further assume that these are the smallest positive integers for which this is true. In other words, p and q have no common factors.

At least one of $\{p, q\}$ must be an odd number, otherwise p and q would have a common factor of 2.

If we square both sides of (1) we get, $2 = p^2/q^2$ and therefore

$$p^2 = 2q^2 \quad . \tag{2}$$

If $\sqrt{2}$ were rational, then there must exist some integers p and q such that

$$\sqrt{2} = p/q \quad . \tag{1}$$

Let us further assume that these are the smallest positive integers for which this is true. In other words, p and q have no common factors.

At least one of $\{p, q\}$ must be an odd number, otherwise p and q would have a common factor of 2.

If we square both sides of (1) we get, $2 = p^2/q^2$ and therefore

$$p^2 = 2q^2 \quad . \tag{2}$$

If p were odd, then p^2 would be odd, but from (2) we see that p^2 is even. Therefore p must be even and q must be odd.

$$p^2 = 4n^2 \quad . \tag{3}$$

$$p^2 = 4n^2 \quad . \tag{3}$$

Substituting for p^2 in (2) using (3) gives us

$$4n^2 = 2q^2$$

and therefore

$$2n^2 = q^2 \quad . \tag{4}$$

$$p^2 = 4n^2 \quad . \tag{3}$$

Substituting for p^2 in (2) using (3) gives us

$$4n^2 = 2q^2$$

and therefore

$$2n^2 = q^2 \quad . \tag{4}$$

If q were odd, then q^2 would also be odd, but from (4) we see that q^2 is even. But we have already shown that q must be odd, which is a contradiction.

$$p^2 = 4n^2 \quad . \tag{3}$$

Substituting for p^2 in (2) using (3) gives us

$$4n^2 = 2q^2$$

and therefore

$$2n^2 = q^2 \quad . \tag{4}$$

If q were odd, then q^2 would also be odd, but from (4) we see that q^2 is even. But we have already shown that q must be odd, which is a contradiction. Therefore the assumption that $\sqrt{2}$ is rational must be incorrect. Q.E.D.