Stuff you should already know

Everything you learn in math you will use again and again.

Immediate, Automatic, Effortless

seven

Immediate, Automatic, Effortless

seven 6+1 5+24+3

Immediate, Automatic, Effortless

seven<math>6+15+24+3

Almost everything the brain does is done subconsciously.

You just need to practice until you no longer have to think about it.

Counting

All of mathematics is based on counting.

therefore

$$2+2 = (1+1) + (1+1)$$

= 1+1+1+1
= 4

The order by which numbers are counted **defines** the numbers.

Addition and Subtraction

+	1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9	10
2	3	4	5	6	7	8	9	10	11
3	4	5	6	7	8	9	10	11	12
4	5	6	7	8	9	10	11	12	13
5	6	7	8	9	10	11	12	13	14
6	7	8	9	10	11	12	13	14	15
7	8	9	10	11	12	13	14	15	16
8	9	10	11	12	13	14	15	16	17
9	10	11	12	13	14	15	16	17	18

If you can count, you can add and subtract.

Multiplication and Division

×	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	4	6	8	10	12	14	16	18
3	3	6	9	12	15	18	21	24	27
4	4	8	12	16	20	24	28	32	36
5	5	10	15	20	25	30	35	40	45
6	6	12	18	24	30	36	42	48	54
7	7	14	21	28	35	42	49	56	63
8	8	16	24	32	40	48	56	64	72
9	9	18	$\overline{27}$	36	45	54	63	72	81

If you can add, you can multiply and divide.

Adding a negative number is the same as subtracting a positive number.

$$a + (-b) = a - b$$

Adding a negative number is the same as subtracting a positive number.

$$a + (-b) = a - b$$

Subtracting a negative number is the same as adding a positive number.

$$a - (-b) = a + b$$

Adding a negative number is the same as subtracting a positive number.

$$a + (-b) = a - b$$

Subtracting a negative number is the same as adding a positive number.

$$a - (-b) = a + b$$

The product of a positive and a negative is negative.

$$a(-b) = (-a)b = -ab$$

Adding a negative number is the same as subtracting a positive number.

$$a + (-b) = a - b$$

Subtracting a negative number is the same as adding a positive number.

$$a - (-b) = a + b$$

The product of a positive and a negative is negative.

$$a(-b) = (-a)b = -ab$$

The product of two negatives is positive.

$$(-a)(-b) = ab$$

When subtracting a large number from a small number, you can pull the sign outside and reverse the subtraction.

$$a - b = -(b - a)$$

Reciprocals

Dividing is the same as multiplying by a reciprocal.

$$x \div \left(\frac{a}{b}\right) = x \left(\frac{b}{a}\right)$$
$$a/b = a \left(\frac{1}{b}\right)$$

Fractions

Addition (with common denominators):

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

Fractions

Addition (with common denominators):

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

Multiplication:

$$\frac{a}{c} \times \frac{b}{d} = \frac{ab}{cd}$$

Fractions

Addition (with common denominators):

a		b	_	a	+	b
\overline{c}	Τ	\overline{c}	_		С	_

Multiplication:

a		b		ab
—	\times	_	=	
c		d		cd

Addition (cross product):

$$\frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}$$

12.34 =
$$(1 \times 10) + (2 \times 1) + (3 \times \frac{1}{10}) + (4 \times \frac{1}{100})$$

$$12.34 = (1 \times 10) + (2 \times 1) + (3 \times \frac{1}{10}) + (4 \times \frac{1}{100}) \\ = 1234/100$$

$$12.34 = (1 \times 10) + (2 \times 1) + (3 \times \frac{1}{10}) + (4 \times \frac{1}{100}) \\ = 1234/100$$

Multiplying by 10 moves the decimal to the right 1 place.

 $12.34 \times 10 = 123.4$

$$12.34 = (1 \times 10) + (2 \times 1) + (3 \times \frac{1}{10}) + (4 \times \frac{1}{100}) \\ = 1234/100$$

Multiplying by 10 moves the decimal to the right 1 place.

 $12.34 \times 10 = 123.4$

Dividing by 10 moves the decimal to the left 1 place.

12.34/10 = 1.234

Powers of 10

$$\begin{array}{rcrcrcr} & & & \\ 10^{-3} & = & 0.001 \\ 10^{-2} & = & 0.01 \\ 10^{-1} & = & 0.1 \\ 10^{0} & = & 1 \\ 10^{0} & = & 1 \\ 10^{1} & = & 10 \\ 10^{2} & = & 100 \\ 10^{3} & = & 1000 \\ & & & \\ \end{array}$$

Powers of 10

:

$$10^{-3} = 0.001$$

 $10^{-2} = 0.01$
 $10^{-1} = 0.1$
 $10^{0} = 1$
 $10^{1} = 10$
 $10^{2} = 100$
 $10^{3} = 1000$
 \vdots

Scientific Notation:

 $a \times 10^n$ where $1 \le a < 10$

Squares and Square Roots

Exponents

$$x^2 = xx$$
 squared
 $x^3 = xxx$ cubed
 $x^4 = xxxx$

÷

Exponents

$$x^2 = xx$$
 squared
 $x^3 = xxx$ cubed
 $x^4 = xxxx$

÷

$$x^{1} = x$$

$$x^{0} = 1$$

$$x^{-1} = 1/x \text{ inverse}$$

$$x^{-2} = 1/x^{2}$$

$$\cdot$$

Exponents

$$x^2 = xx$$
 squared
 $x^3 = xxx$ cubed
 $x^4 = xxxx$

÷

$$x^{1} = x$$

 $x^{0} = 1$
 $x^{-1} = 1/x$ inverse
 $x^{-2} = 1/x^{2}$
:

$$\begin{array}{rcl} (ab)^n &=& a^n b^n \\ x^n x^m &=& x^{(n+m)} \\ (x^n)^m &=& x^{nm} \end{array}$$

Prime Numbers

A prime number can only be divided evenly by one and itself.

 $\{2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\}$

Prime Numbers

A prime number can only be divided evenly by one and itself.

 $\{2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\}$

Prime Factorization

Any whole number > 1 can be represented as the product of prime numbers. Simply work through the list of prime numbers, seeing which ones divide evenly.

> 60/2 = 30 30/2 = 15 15/3 = 5 $60 = 2^2 \times 3 \times 5$

Sets

Standard sets of numbers include

$$\emptyset = \text{null set}$$

$$\Re = \text{real numbers}$$

$$\{1, 2, 3, \ldots\} = \text{natural numbers}$$

$$\{0, 1, 2, \ldots\} = \text{whole numbers}$$

$$\{\ldots, -3, -2, -1\} = \text{negative numbers}$$

$$\{\ldots, -2, -1, 0, 1, 2, \ldots\} = \text{integers}$$

Sets

Standard sets of numbers include

$$\emptyset = \text{null set}$$

$$\Re = \text{real numbers}$$

$$\{1, 2, 3, \ldots\} = \text{natural numbers}$$

$$\{0, 1, 2, \ldots\} = \text{whole numbers}$$

$$\{\ldots, -3, -2, -1\} = \text{negative numbers}$$

$$\{\ldots, -2, -1, 0, 1, 2, \ldots\} = \text{integers}$$

Rational numbers can be expressed as ratios.

$$\{x: \quad x=p/q\}$$

where p and q are integers.

Sets

Standard sets of numbers include

$$\emptyset = \text{null set}$$

$$\Re = \text{real numbers}$$

$$\{1, 2, 3, \ldots\} = \text{natural numbers}$$

$$\{0, 1, 2, \ldots\} = \text{whole numbers}$$

$$\{\ldots, -3, -2, -1\} = \text{negative numbers}$$

$$\{\ldots, -2, -1, 0, 1, 2, \ldots\} = \text{integers}$$

Rational numbers can be expressed as ratios.

$$\{x: \quad x = p/q\}$$

where p and q are integers.

Irrational numbers are everything left in \Re after removing rational numbers. They include things such as π and $\sqrt{2}$.

Set Operations

- $x \in A$ x is an element of set A
- $A \subset B$ set A is a subset of set B
- $A \cup B$ the union of sets A and B
- $A \cap B$ the intersection of sets A and B

Set Operations

- $x \in A$ x is an element of set A
- $A \subset B$ set A is a subset of set B
- $A \cup B$ the union of sets A and B
- $A \cap B$ the intersection of sets A and B

$$2 \in \{1, 2, 3\}$$

$$\{1, 2\} \subset \{1, 2, 3\}$$

$$\{1, 2\} \cup \{2, 3\} = \{1, 2, 3\}$$

$$\{1, 2\} \cap \{2, 3\} = \{2\}$$

Venn Diagrams

The entire diagram represents $A\cup B$

Graphing

The horizontal line is the x axis. The vertical line is the y axis. Where the axes cross is called the origin.

Every point on the grid corresponds to an (x, y) coordinate pair.

The coordinate pair for the origin is (0,0).

Positive x values are to the right of the origin.

Positive y values are above the origin.

Graphing a Point

To graph the point (4,3) one traces a vertical line at x = 4 and a horizontal line at y = 3. The point is located where the two lines cross.

Graphing a Line

Do **not** freehand a line on graph paper which looks "sort of" like the line shown on the calculator.

Use the **TABLE** feature to locate (x, y) coordinate pairs. Choose 2 points and place them on the grid. List the (x, y) coordinates used. Draw a line through the 2 points using a straight edge.

