Tri-diagonal Transition Matrix
John Kormylo

One of the problems with state vector models is that they require o(n*) operations
per step whereas an ARMA model (or its state vector equivalent) only requires o(n) opera-
tions. However, the ARMA model is notoriously subject to numerical sensitivity problems,
whereas state vector models can be formed with much more robust characteristics (e.g.
the balanced realization).

As a compromise, I propose taking a state vector model and reducing it to tri-diagonal
form. This would also require only o(n) operations/step but would hopefully be more
robust.

One could always perform an eigenvalue decomposition of the transition matrix, con-
struct 2 x 2 submatrices from complex conjugate pairs, then string these along the main
diagonal together with any real eigenvalues. This is, however, a lot more work than is
actually needed.

Closed Form Solution
For any invertable matrix 7" one can show that the impulse response for a state vector
model satisfies

A(K) = W' Bhy = (WT)(T@T)H(Ty) 1)
for k =0,1,2,... (proof by induction). We will choose
T=Tn-1)T(n-2)...T(2)T(1) (2)

so as to reduce @ to tri-diagonal form, where

T@)::[LSi Q%)} for i=1,2,....,n—1 (3)

and Q(¢) is of the form
Q(i) = I —2u(i)v'(z) (4)

for some vectors u(¢) and v(¢) such that v/'(¢)u(z) = 1 (which may or may not qualify as
a Householder transform).
One can easily show that Q71(i) = Q(i) and T~1(:) = T(¢) and therefore
T'=T(1)T(2)...T(n —2)T(n —1) . (5)

At each step ¢ of the reduction, the reduced transition matrix is of the form

0
o= | A 0 ©
0 0 b(i) 38

where A(7) is an (¢ X 7) tri-diagonal matrix. The next step is given by
Qi+ 1)=T()2(:)T(2)
0
- A0 ; . ")
o R0
0 ... 0 QbE) QE)D()Q()

To be tri-diagonal, vectors u(z) and v(z) must be chosen to satisfy (dropping the index 1)

a
0
@b=b—-2u(v'b) = | . (8)
L 0]
and
81
0
Q'c=c—2v(u'c)= | . (9)
L 0]
for some unknown « and f.
Multiplying both sides of (8) by v' gives us
—v'b = vja (10)
while multiplying both sides of (9) by u’ gives us
—uc=uf . (11)

Substituting these back into (8) and (9) we get

by = a(l — 2uyvq)
1 = B(1 —2ujv)
bp = —2aviur, V k>1
ck = —20uvr V k>1

and therefore

c'b = ozﬁ(l —4uyvy + 4u1vl(v'u))
=af (16)

since v'u = 1. Multiplying b; times ¢; using (12) and (13) and substituting for a8 using
(16), we get the solution

5161

c'b

= (1 — 2uyv;)? (17)

assuming that ¢'b # 0.

One can avoid the problem of having the left hand side of (17) being negative by
swapping rows and columns. If ¢’b is positive, search for the largest brcy and swap rows
and columns with 51 and c1, respectively. Similarly, if ¢'b is negative, search for the most
negative bycg. Also remember to swap the corresponding entries in h and +.

(Actually, instead of swapping rows and columns, one should move the k£ row up and
k column left to the (7 + 1) position, then push the intervening rows down and columns
right one spot, for reasons which will not become apparent until later.)

As a solution to (17) we use

5101

c'b

1 blcl
U = 5 (1 + C’b) (19)

so that ujv; # 0 even when bje; = ¢'b. We can now solve for o and 3 using (12) and
(13). Without loss of generality, we assume u; = 1 and solve for vy from (19), then solve
for the remaing uy and vy using (14) and (15).

1— 2‘&1’01 = —

and therefore

Special Cases

If ¢'b = 0, no transformation of the form of 7'(7) from (3) will help. Any tranformation
of the form of T(j) for j < ¢ can and will be reversed when restoring the earlier rows and
columns to tri-diagonal form. Ounly transformations involving the first row and column
will not be undone while tri-diagonalizing the entire matrix again.

For example, one could move the last row and column to the first location and push
the rest of the rows down and columns right one space. Every row and column completed
pushes the problem closer to the bottom. If it is pushed to the last or next to last row and
column, then the matrix is already tri-diagonalized.

If ¢'b = 0 occurs in the very first row and column, there is an alternative which always
works. Specifically, one can use the transformation 7(0)®7(0) where

T(0)=1-2uv' (20)

using
u= [ozlc] and v = [ﬁlb] (21)

so that v'u = 1 for any « and (5.

Performing this transformation we see that

a c a c . , , ,
T(0) b DT(0)= b D —2ufa+ fb'b '+ Bb'D]
Sla+acce]| ! ! ' '
_Z[b—l—aDc]v + 4u(a + fb'b + ac’'c + afb’'Dc)v
_ | «0) (0 o
-[0) oo 2
where
a(0) = a + 2ac’'c + 28b'b + 4a8b'De (23)
b(0) = —b — 2aDc + 2a(a + 3b'b + 2ac’c + 2a4b' Dc)c (24)
c'(0) = —c' —28b'D +2B(a + ac'c + 258b'b + 2a3b' Dc)b’ (25)
and

D(0) = D — 2acc’ —23bb’) — 2a8(cb’'D + Dcb')
+ 4af(a + pb'b + ac'c + afb'De)ch’ . (26)

Scale factors a and [are chosen so that ¢'(0)b(0) # 0 where from (24) and (25) we have

c'(0)b(0) = 28(b'Db — ab'b) + 2a(c'Dc — ac’'c)
—43*(b'b)? — 4a*(c'c)?
+ 4aB(b'D*c — 2ab’' Dc — b'bc'c)
—8afB(b'De)(Bb'b + ac’c) — 8a*B*(b'De)® . (27)
While any non-zero solution will do, for numerical purposes one would like a solution as
far from zero as possible, such as a local extremum.
Solving for a and 3 independently unfortunately requires finding the roots of a fifth

order polynomial, and is probably overkill anyway. Instead, assume a = [and set the
derivative to zero, yeilding the cubic polynomial

0 = 16a°(b' Dc)?
+12a*(b'De)(b'b + c'c)
+4a((b'b)* 4 (c'c)’ 4+ (b'b)(c'c) + 2ab'Dc — b’ D*c)
+ a(b'vecb + c'¢c) —b'Db —c'Dc . (28)

Alternatively, set @ = 1 and use

2b'D%*c + b'Db — ab’b — 4ab’'Dc — 2(b'b)(c’c) — 4(b'Dc)(c'c)

p= 4b'b + 8(b'Dc)(b'b) + 8(b' Dc)?

or set # =1 and use

_ 2b'D?c + c¢'Dc — ac’c — 4ab'Dc — 2(b'b)(c’c) — 4(b'Dc)(b'b)
B 4c'c + 8(b'Dc)(c’c) + 8(b'Dc)?

«

4

At least one of the above should yeild a useful solution.

Numerical Robustness
While the above algorithm will give ¢ tri-diagonal solution, it is probably not the
best tri-diagonal solution. However, it can be used as the initial guess for non-linear
optimization for the tri-diagonal parameters. The only problem is that the gradients for
least-squares go to zero as the error goes to zero, which may result in convergence before the
best solution is found. Omne can overcome this problem by using single precision (or a DSP)
for the state vector model and double precision for the error and gradient calculations.

