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In the echo location problem, one is faced with separating echoes of unknown size
and location from background noise. (This differs from the communication problem where
one is generally faced with determining which of several possible signals occur at specific
times.)

We use a state vector model to produce the source wavelet as its impulse response,
and model the reflections as a sparse spike train with Gaussian distributed amplitudes
and exponentially distributed intervals between spikes. This corresponds to a signal of the
form

u(k) = a(k)g(k) ¥V k=0,1,2,...,N—1 (1)

where the a(k) comprise a zero-mean uncorrelated Gaussian sequence with variance C' and
the ¢(k) are a Baysian sequence such that

m@@n:{i_Azﬁgié Vo k=0,1,... ,N—1 2)
The state vector model is given by
x(k +1) = &x(k) + yu(k) (3)
and
2(k) = h'x(k) + n(k) (4)

where z(k) is our observed signal and n(k) is the observation noise modeled as a zero-mean
uncorrelated Gausian sequence with variance R.
For a given sequence ¢(k) for k = 0,1,..., N — 1, the variance of the input signal is
given by
€ {u*(k)lq(k)} = Cq(k) (3)
which can be used by a Kalman smoother to estimate spike amplitudes. Needless to say,
this produces far more accurate results than using the average variance

E{(k))=Cr=Q . (6)

The only problem is that we don’t know the correct ¢(k) sequence.
For a given sequence q' = [¢(0),¢(1),...,¢(N —1)], the negative log likelihood function
is given by

J(q) = 2mlog <¥> + ; h’Pfk|(Z|f I)lll)—l— 7 +log(h'P(klk —1)h+ R) (7)

where m is the number of spikes. As will be shown in the appendix, the log likelihood
ratio for replacing a single ¢(k) with 1 — ¢(k) is given by

(v'x(k +1))° , ,
C—1(1—2¢(k))+~'S(k+ 1)y —log[14 C(1 —2¢(k))y' S(k +1)v] ®

A
~2(1 — 2q(k))log

log A(k) =




where r(k + 1) and S(k + 1) are produced by the Kalman smoother.

This means that by running a Kalman smoother for a given sequence q one can
obtain the log likelihood ratios for replacing ¢(k) with 1 — ¢(k) for every possible value of
k. The SMLR detector performs the replacement which causes the greatest improvement
in likelihood, then repeats the procedure until no beneficial replacements are left.



Appendix
Define vectors u' = [u(0),u(1l),...,u(N —1)] and z' = [2(1),2(2),...,2(N)], and

matrix

O =¢E{zz'|q} . (A-1)

The optimal smoother for a given q is can be written as
(q) = £ {ua'lq} 22 (4-2)

and the negative log-likelihood function as
1o-1 : A
J(q) = 2'Q7 "z 4+ log det 2 — 2m log (ﬁ) (A-3)

where det 2 denotes the determinant of matrix €.
Define triangular matrix

v(1) 0 0 .0
v(2) v(1) .0
v = v3) v(2) v(1) ... 0 (A —4)
o(N) (N —=1) o(N—2) ... »()
where
v(k)=h'®* 'y ¥V k>0 (A —5)

1s the source wavelet. One can now write
z=Vu+n (A—6)

where n' = [n(1),n(2),...,n(N)], and therefore

¢ {uz'q} = £ {uw'|q} V' (4-7)
and
Q=VE{ud'|q} V' + RI (A-28)
where
Cq(0) 0 0
0 Cq(l) ... 0
cutay=| T o . (4-9)
0 0 ... Cg(N-1)

Consider sequence qj which differs from q only by replacing ¢(k) with 1 — ¢(k). The
corresponding covariance matrix is given by

Qp =E{zz' |qi} = Q@+ (1 — 2q(k))vi Cvy, (A—10)
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where vector vi is the kth column of matrix V. The log likelihood ratio for choosing qx

over q is given by
log A(k) = J(q) = J(ak)
det 2 A

=7z Q7 1z — Z’lelz + log (det Qk> — 2(1 — 2q(k))10g 1

From the matrix inversion lemma we can write

Q lvpvi Q71
C41 —2q(k)) + vi.Q vy,

lel — Q_l _

and therefore

(viQ~1z)?
C11 —2q(k)) 4+ vi.Q vy

Z'Q,;lz =z Q7 'z —

One can also show that

det 2,

_ —1
g = detl@7'

=1+ C(1 —2¢(k))v,Q vy
and the log-likelihood ratio in (A-11) can be simplified to

(viQ1z)?
C11 —2q¢(k)) 4+ vi.Q vy

— 2(1— 2¢(k))log

log A(k) = —log [1+ C(1 —2¢(k))veQ " vy]

1—A

From the optimal smoother formulation in (A-2) using (A-9) we can write

i(kla) = Ca(kvi 1
while the Kalman smoother formulation is given by
a(kla) = Ca(kpye(k + 1)

which means that

viQ 'z =4'r(k+1)

The error covariance for (A-2) is given by
€ {ut'|q} = £ {ud'|q} - € {uu'|q} V'QT'VE {uu'|q}
and therefore using (A-9) we get
E{a*(kla)} = Cq(k) — C?*q(k)vi Q™ vy
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Comparing that with the Kalman smoother formulaton

€ {a*(kla)} = Cq(k) — C*q(k)y'S(k)y (4 —21)

we see that

viQ v =4'S(k)y . (A —22)
Substituting (A-18) and (A-22) back into (A-15) we obtain our desired result
(7'r(k +1))°
C=H(1 —2q(k)) + 'Sk + 1)y

— 2(1 - 2¢(k))log

log A(k) = —log[1 + C(1—2¢(k))y'S(k + 1]

1—A
(A —23)



