Solving Integrals using Differential Equations

John Kormylo

In acoustics one often finds integrals of the form

$$F(\omega/c) = \int_0^{\omega/c} f(k_r) g(k_z) dk_z$$

or

$$G(\omega/c) = \int_0^{\omega/c} f(k_r) g(k_z) k_r dk_r$$

where

$$k_r^2 + k_z^2 = \left(\frac{\omega}{c}\right)^2$$

and where f(x) and g(x) generally satisfy ordinary differential equations. While there may not be a closed form solution, it may be possible to find differential equations which are satisfied by F(x) and G(x).

Using the substitutions

$$x = \frac{\omega}{c}$$
 , $k_r = x \sin \theta$ and $k_z = x \cos \theta$

we can rewrite our integrals as

$$F(x) = x \int_0^{\pi/2} f(x \sin \theta) g(x \cos \theta) \sin \theta \, d\theta \tag{1}$$

and

$$G(x) = x^2 \int_0^{\pi/2} f(x \sin \theta) g(x \cos \theta) \sin \theta \cos \theta d\theta$$
 (2)

to satisfy the constraint on k_r and k_z .

Solving for F(x)

Define state vector $\mathbf{v}(x)$ using

$$v_1(x) = x \int_0^{\pi/2} f(x \sin \theta) g(x \cos \theta) \sin \theta \, d\theta \tag{3}$$

$$v_2(x) = x \int_0^{\pi/2} f(x \sin \theta) g(x \cos \theta) \cos \theta \, d\theta \tag{4}$$

and

$$v_3(x) = \int_0^{\pi/2} f(x\sin\theta) g(x\cos\theta) d\theta \tag{5}$$

and solve for the state vector model

$$\mathbf{v}'(x) = A(x)\mathbf{v}(x) + \mathbf{b}(x) \tag{6}$$

$$F(x) = \mathbf{h}^{\mathsf{T}} \mathbf{v}(x) \tag{7}$$

where, in this case,

$$\mathbf{h}^{\top} = (1 \quad 0 \quad 0) \quad .$$

An alternative formulation is to include f(x) and/or g(x) in an expanded state vector instead of putting them into $\mathbf{b}(x)$, and solving for both at the same time.

As will be shown later, one can obtain the equations

$$v_1'(x) = f(0)g(x) - f(x)\lim_{y \to 0} yg(xy) + x \int_0^{\pi/2} f'(x\sin\theta)g(x\cos\theta) d\theta$$
 (8)

$$v_2'(x) = f(x)g(0) - g(x)\lim_{y \to 0} yf(xy) + x \int_0^{\pi/2} f(x\sin\theta)g'(x\cos\theta)d\theta$$
 (9)

and

$$v_3'(x) = \int_0^{\pi/2} f'(x\sin\theta) g(x\cos\theta) \sin\theta \, d\theta + \int_0^{\pi/2} f(x\sin\theta) g'(x\cos\theta) \cos\theta \, d\theta \quad (10)$$

by taking partial derivatives w.r.t. x and using integration by parts. When f and g satisfy first order differential equations, one can substitute for f' and g' in (8) through (10) and obtain integrals corresponding to other states in the vector. Then it is a matter of putting the appropriate terms into matrix A(x) and vector $\mathbf{b}(x)$.

When f(x) and g(x) satisfy higher order o.d.e.s one must construct state vector models and define $\mathbf{v}(x)$ to include the three integrals for each of these model states.

Solving for G(x)

Define state vector $\mathbf{v}(x)$ using (3) and (4) as before, plus

$$v_3(x) = x^2 \int_0^{\pi/2} f(x \sin \theta) g(x \cos \theta) \sin(2\theta) d\theta$$
 (11)

and

$$v_4(x) = x^2 \int_0^{\pi/2} f(x\sin\theta) g(x\cos\theta) \cos(2\theta) d\theta$$
 (12)

where, in this case,

$$G(x) = \begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 \end{pmatrix} \mathbf{v}(x)$$
.

As will be shown later, one can obtain the equations

$$xv_1'(x) - 2v_1(x) = x \left(f(x) \lim_{y \to 0} y g(xy) - f(0) g(x) \right)$$
$$- x^2 \int_0^{\pi/2} f'(x \sin \theta) g(x \cos \theta) \cos(2\theta) d\theta$$
$$+ x^2 \int_0^{\pi/2} f(x \sin \theta) g'(x \cos \theta) \sin(2\theta) d\theta \tag{13}$$

$$xv_2'(x) - 2v_2(x) = x \left(g(x) \lim_{y \to 0} y f(xy) - f(x) g(0)\right)$$

$$+ x^2 \int_0^{\pi/2} f'(x \sin \theta) g(x \cos \theta) \sin(2\theta) d\theta$$

$$+ x^2 \int_0^{\pi/2} f(x \sin \theta) g'(x \cos \theta) \cos(2\theta) d\theta$$

$$v_3'(x) = x \left(f(0) g(x) - f(x) g(0)\right)$$

$$+ x^2 \int_0^{\pi/2} f'(x \sin \theta) g(x \cos \theta) \cos \theta d\theta$$

$$+ x^2 \int_0^{\pi/2} f(x \sin \theta) g'(x \cos \theta) \sin \theta d\theta$$

$$(15)$$

and

$$v_4'(x) = x \Big(f(x) \lim_{y \to 0} y g(xy) - g(x) \lim_{y \to 0} y f(xy) \Big)$$

$$+ x^2 \int_0^{\pi/2} f'(x \sin \theta) g(x \cos \theta) \sin \theta \, d\theta$$

$$+ x^2 \int_0^{\pi/2} f(x \sin \theta) g'(x \cos \theta) \cos \theta \, d\theta$$
(16)

from which one can construct A(x) and $\mathbf{b}(x)$ as before.

Example

Let $f(k_r) = \exp(jrk_r)$ and $g(k_z) = \exp(jzk_z)$, which satisfy the differential equations f'(x) = jrf(x) and g'(x) = jzg(x).

(Using complex numbers effectively turns a second order o.d.e. into a state vector model.) Substituting these into equations (8) through (10) we get

$$v'_1(x) = e^{jzx} + jrx v_3(x)$$

$$v'_2(x) = e^{jrx} + jzx v_3(x)$$

and

$$v_3'(x) = \frac{jr}{x}v_1(x) + \frac{jz}{x}v_2(x)$$

respectively, and therefore

$$A(x) = \begin{pmatrix} 0 & 0 & jrx \\ 0 & 0 & jzx \\ \frac{jr}{r} & \frac{jz}{r} & 0 \end{pmatrix} \quad \text{and} \quad \mathbf{b}(x) = \begin{pmatrix} e^{jzx} \\ e^{jrx} \\ 0 \end{pmatrix} \quad .$$

Since A(x) has a rank of only 2, this model corresponds to a second order differential equation. From (6) and (7) one can show that

$$F(x) = \mathbf{h}^\top \left(\frac{\partial}{\partial x} I - A(x) \right)^{-1} \mathbf{b}(x)$$

and therefore

$$F''(x) + (r^2 + z^2)F(x) = jze^{jrx}$$

since

$$\left(\frac{\partial}{\partial x}I - A(x)\right)^{-1} = \frac{1}{\left(\frac{\partial^2}{\partial x^2} + r^2 + z^2\right)\frac{\partial}{\partial x}} \begin{pmatrix} \frac{\partial^2}{\partial x^2} + z^2 & -rz & \frac{\partial}{\partial x}jrx \\ -rz & \frac{\partial^2}{\partial x^2} + r^2 & \frac{\partial}{\partial x}jzx \\ \frac{\partial}{\partial x}\frac{jr}{x} & \frac{\partial}{\partial x}\frac{jz}{x} & \frac{\partial^2}{\partial x^2} \end{pmatrix} \quad .$$

The extra $\partial/\partial x$ in the determinant was used to integrate $(-rz)\exp(jrx)$.

Derivations

Taking the partial of (5) w.r.t. x gives us (10) directly. Taking the partial of (3) w.r.t. x gives us

$$v_1'(x) = \int_0^{\pi/2} f(x\sin\theta) g(x\cos\theta) \sin\theta$$
$$+ x \int_0^{\pi/2} f'(x\sin\theta) g(x\cos\theta) \sin^2\theta d\theta$$
$$+ x \int_0^{\pi/2} f(x\sin\theta) g'(x\cos\theta) \sin\theta \cos\theta d\theta$$

and therefore, multiplying by x and subtracting (3),

$$xv_1'(x) - v_1(x) = x^2 \int_0^{\pi/2} f'(x\sin\theta) g(x\cos\theta) \sin^2\theta \, d\theta$$
$$+ x^2 \int_0^{\pi/2} f(x\sin\theta) g'(x\cos\theta) \sin\theta \cos\theta \, d\theta \quad . \tag{17}$$

Using integration by parts on (3) where $dv = \sin \theta \, d\theta$ gives us

$$v_1(x) = x \left(f(0) g(x) - f(x) \lim_{y \to 0} y g(xy) \right)$$

$$+ x^2 \int_0^{\pi/2} f'(x \sin \theta) g(x \cos \theta) \cos^2 \theta \, d\theta$$

$$- x^2 \int_0^{\pi/2} f(x \sin \theta) g'(x \cos \theta) \sin \theta \cos \theta \, d\theta \quad . \tag{18}$$

Adding (18) to (17) gives us

$$\begin{split} xv_1'(x) &= x \big(f(0) \, g(x) - f(x) \lim_{y \to 0} y g(xy) \big) \\ &+ x^2 \int_0^{\pi/2} f'(x \sin \theta) \, g(x \cos \theta) \, d\theta \end{split}$$

and dividing both sides by x yields (8). Subtracting (18) from (17) yields (13). Taking the partial of (4) w.r.t. x gives us

$$v_2'(x) = \int_0^{\pi/2} f(x \sin \theta) g(x \cos \theta) \cos \theta$$
$$+ x \int_0^{\pi/2} f'(x \sin \theta) g(x \cos \theta) \sin \theta \cos \theta d\theta$$
$$+ x \int_0^{\pi/2} f(x \sin \theta) g'(x \cos \theta) \cos^2 \theta d\theta$$

and therefore, multiplying by x and subtracting (4),

$$xv_2'(x) - v_2(x) = x^2 \int_0^{\pi/2} f'(x\sin\theta) g(x\cos\theta) \sin\theta \cos\theta d\theta$$
$$+ x^2 \int_0^{\pi/2} f(x\sin\theta) g'(x\cos\theta) \cos^2\theta d\theta \quad . \tag{19}$$

Using integration by parts on (4) where $dv = \cos\theta \, d\theta$ gives us

$$v_2(x) = x \left(f(x) g(0) - g(x) \lim_{y \to 0} y f(xy) \right)$$
$$- x^2 \int_0^{\pi/2} f'(x \sin \theta) g(x \cos \theta) \sin \theta \cos \theta d\theta$$
$$+ x^2 \int_0^{\pi/2} f(x \sin \theta) g'(x \cos \theta) \sin^2 \theta d\theta \qquad (20)$$

Adding (20) to (19) gives us

$$xv_2'(x) = x \left(f(x) g(0) - g(x) \lim_{y \to 0} y f(xy) \right)$$
$$+ x^2 \int_0^{\pi/2} f(x \sin \theta) g'(x \cos \theta) d\theta$$

and dividing both sides by x yields (9). Subtracting (20) from (19) yields (14). Taking the partial of (11) w.r.t. x gives us

$$v_3'(x) = 2x \int_0^{\pi/2} f(x\sin\theta) g(x\cos\theta) \sin(2\theta)$$
$$+ 2x^2 \int_0^{\pi/2} f'(x\sin\theta) g(x\cos\theta) \sin^2\theta \cos\theta d\theta$$
$$+ 2x^2 \int_0^{\pi/2} f(x\sin\theta) g'(x\cos\theta) \sin\theta \cos^2\theta d\theta$$

and therefore, multiplying by x and subtracting (11) times 2,

$$xv_3'(x) - 2v_3(x) = 2x^3 \int_0^{\pi/2} f'(x\sin\theta) g(x\cos\theta) \sin^2\theta \cos\theta d\theta$$
$$+ 2x^3 \int_0^{\pi/2} f(x\sin\theta) g'(x\cos\theta) \sin\theta \cos^2\theta d\theta . \tag{21}$$

Multiplying (11) by 2 and using integration by parts where $dv = 2\sin(2\theta) d\theta$ gives us

$$2v_3(x) = x^2 \left(f(0) g(x) - f(x) g(0) \right)$$

$$+ x^3 \int_0^{\pi/2} f'(x \sin \theta) g(x \cos \theta) \cos \theta \cos(2\theta) d\theta$$

$$- x^3 \int_0^{\pi/2} f(x \sin \theta) g'(x \cos \theta) \sin \theta \cos(2\theta) d\theta \qquad (22)$$

Substituting for $\cos(2\theta)$ using

$$\cos(2\theta) = 1 - 2\sin^2\theta = 2\cos^2\theta - 1$$

and adding (22) to (21) gives us

$$xv_3'(x) = x^2 (f(0) g(x) - f(x) g(0))$$
$$+ x^3 \int_0^{\pi/2} f'(x \sin \theta) g(x \cos \theta) \cos \theta d\theta$$
$$+ x^3 \int_0^{\pi/2} f(x \sin \theta) g'(x \cos \theta) \sin \theta d\theta$$

and dividing both sides by x yields (15).

Taking the partial of (12) w.r.t. x gives us

$$v_4'(x) = 2x \int_0^{\pi/2} f(x\sin\theta) g(x\cos\theta) \cos(2\theta)$$
$$+ 2x^2 \int_0^{\pi/2} f'(x\sin\theta) g(x\cos\theta) \sin\theta \cos(2\theta) d\theta$$
$$+ 2x^2 \int_0^{\pi/2} f(x\sin\theta) g'(x\cos\theta) \cos\theta \cos(2\theta) d\theta$$

and therefore, multiplying by x and subtracting (12) times 2,

$$xv_4'(x) - 2v_4(x) = x^3 \int_0^{\pi/2} f'(x\sin\theta) g(x\cos\theta) \sin\theta \cos(2\theta) d\theta$$
$$+ x^3 \int_0^{\pi/2} f(x\sin\theta) g'(x\cos\theta) \cos\theta \cos(2\theta) d\theta \qquad (23)$$

Multiplying (12) by 2 and using integration by parts where $dv = 2\cos(2\theta) d\theta$ gives us

$$2v_4(x) = x^2 \left(f(x) \lim_{y \to 0} yg(xy) - g(x) \lim_{y \to 0} yf(xy) \right)$$
$$-2x^3 \int_0^{\pi/2} f'(x\sin\theta) g(x\cos\theta) \sin\theta \cos^2\theta d\theta$$
$$+2x^3 \int_0^{\pi/2} f(x\sin\theta) g'(x\cos\theta) \sin^2\theta \cos\theta d\theta \qquad (24)$$

Substituting for $\cos(2\theta)$ as before and adding (24) to (23) gives us

$$xv_4'(x) = x^2 \left(f(x) \lim_{y \to 0} yg(xy) - g(x) \lim_{y \to 0} yf(xy) \right)$$
$$+ x^3 \int_0^{\pi/2} f'(x\sin\theta) g(x\cos\theta) \sin\theta \, d\theta$$
$$+ x^3 \int_0^{\pi/2} f(x\sin\theta) g'(x\cos\theta) \cos\theta \, d\theta$$

and dividing both sides by x yields (16).