Bessel Function Calculations
John Kormylo

Bessel functions are usually calculated using power series approximations near z = 0 and by the asymp-
totic solutions

Jo(z) = %cos(x - %) (1)
and
2 s
Ji(z) — — sin(x — Z) (2)

as x — 0o. The goal here is to find better approximations over the entire range of x.

Bessel Functions of the First Kind
Bessel functions can be defined as the solution to the second order differential equation
2?3/ (@) + xdy, (@) + (2° = n?) Ju(z) = 0 3)

for any n. We really only need to solve for Jo(z) and Ji(z) and use the recursion

T (@) = 2 J(w) = T (0) (@
and the identity
Ton(a) = (<1 o) )

forn=1,2,3,....
One can convert this second order differential equations to a first order state vector differential equation
where the state vector consists of Jy and J; by using the identities

Jo(x) = =Ji(z) (6)

and

zJi(z) + Ji(z) = zJp(x) (7)
with initial condition Jo(0) =1 and J1(0) =

Multiple Power Series

Given a power series approximation at xg, one can compute Jo(xzg + Az) and and Ji(xg + Az) for
g = 0,Azx,2Az,... . By storing these values one can re-construct the corresponding power series to
interpolate Jo(z) and J; (z) for any 2 within the appropriate range.

Define power series approximations of the form

=3 e - a0)" (5)
m=0

and
(@)= bmlx —z0)™ 9)
m=0

for some xg. Substituting these series into equation (6) gives us

g My (x — x9)™ :—E b (x — 20)™



and equivalencing over powers of (x — x¢) yields
Q= —bpm—_1/m for m=1,2,3,...

starting from ag = Jy(zg).
From equation (7) we can write

(x — x0)J1(x) + 2o J1(x) + Ji(x) = (x — 30) Jo () + 20 Jo(2)

Substituting the power series approximations into this gives us

oo

Z m+ Dby (z — xo)™ + 20 z Mmby, (x — x9)™ "1 = Z A (2 — 20)™ T + 29 Z am (z — x0)™
m=0

m=1 m=0 m=0
and equivalencing over powers of (x — ) yields the recursive relationship

Tom + Q-1 — (M ~+ 1)b,,
xo(m +1)

bmt1 = for m=1,2,3,...

starting from by = ag — by /xo and by = J1(xg).
When zy = 0, equation (11) simplifies to

(o] o0
E m+ 1)b = E ama™ !
m=0 m=0

and equivalencing over powers of x gives us

by = am—1/(m+1) for m=1,2,3,...

(10)

(13)

starting from ap = 1 and by = 0. Solving for a,, and b,, recursively using (10) and (13) will produce the
known closed-form solution for the power series coefficients, but it turns out that the recursive solution is

more numerically robust.

Bessel Functions of the Second Kind

These functions are defined as
V() = (alogz + B)Jn(z) + 27" fn(z)
where (somewhat arbitrarily) o = 2/7 and 8 = 0.57735 — log 2. Inserting this into the identity
Yg(z) = =Yi(x)

and using (6) gives us

ado(z) + zf5(x) = = fr(x)
while the identity

2Y|(z) + Yi(z) = 2Yp(x)
and (7) gives us

aJi(z) + fi(x) = 2 fo(x)

which we will use to solve for fo(z) and fi(z).
Define power series approximations of the form

[e'S)
E Cm €T — 330
m=0
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and

M8

fi(z) = A (2 — 20)™ (18)

=0

3

for some xy. Substituting (8), (17) and (18) into

—~

15) gives us
o0 o0 o0 oo
a Z am(x —20)™ + Z mem (T — 20)™ + xo Z mep (z — 20)™ ! = — Z A (z — 29)™
m=0 m=1 m=1 m=0
and equivalencing over powers of (z — ) yields the recursion

mey, + dp, + aa,

m+l = — f =1,2,3,... 19
Cr+1 zo(m + 1) or m (19)
starting from ¢; = —(do+aag)/xo and ¢y = fo(zo). (We assume a,, and b,,Vm have already been computed.)
When zy = 0, we instead get
o= It QU193 (20)
m
starting from ¢g = 0.
Substituting (9), (17) and (18) into (16) gives us
ame(z—xo —|—Zmd x—x9)" Zcm T — To m+1—|—1‘020mx—x0)
m=0 m=0 m=0
and equivalencing over powers of (x — xg) yields
m m—1 7 bm
dppy = D0om T Om1 7m0 21,23, (22)

(m+1)

starting from dy = zocyg — aby and dy = fi(xo). This also works when 2y = 0, except that we start from
do = —qQ.

Trigonometric Hybrid
Assume a solution of the form
Jo(z) = a(z) cos(x) + b(z) sin(x) (23)

and
Ji(z) = a(z) sin(z) — b(z) cos(z) (24)

which correspond more closely to the asymptotic solutions. In fact, from (2) and (3) one can show that these
are given by

as & — 0o.
The inverse relationship, as derived in the Appendix, can be written as

a(x) = cos(x)Jo(z) + sin(z)J1 (z) (25)

and
b(z) = sin(x)Jo(x) — cos(x)J1(x) . (26)

However, we intend to solve for a(z) and b(x) directly using differential equations starting from a(0) = 1
and b(0) = 0.



Substituting (23) and (24) into (6) gives us
a'(z) cos(x) — a(z) sin(z) + b/ (x) sin(z) + b(x) cos(z) = —a(x) sin(x) + b(x) cos(x)

which simplifies to
a'(z) cos(x) + b/ (z) sin(z) =0 (27)

while substituting (23) and (24) into (7) gives us

z(d'(z) sin(z) + a(z) cos(z) — b (x) cos(x) + b(x) sin(x))

+a(z)sin(z) — b(z) cos(z) = z(a(x)cos(z) + b(z) sin(z))
which simplifies to .
a' () sin(z) — b (z) cos(z) = —a(x) sm@f“”) + b(z) Cosx(“’) (28)
for x # 0. Combining (27) and (28) gives us
2xa(x) = (cos(2x) — 1)a(x) + sin(2z)b(z) (29)
and
2ab () = sin(2z)a(x) — (cos(2z) + 1)b(z) (30)

(derived in the Appendix).
If order to solve for a(x) and b(z) we will equivalence the high order derivatives when = = . From (29)
one can show that the m!* derivative is given by

= m! , . _
200l ) (2 D) = 3 () 2 @a™ 9@ + o™ @) (3
and from (30) we get
220 (2) + (2m + )b (z Z ( ) 2'(c :(22)a™ ) (&) + i1 (22)b ) (z)) (32)
=0 !
for m =0,1,2,... where ¢, () is defined as
sin(z) :mmod 4 =0
(@) = cos(x) :mmod 4 =1
AT ) —sin(z)  :m mod 4 =2

—cos(z) :mmod4=3

At this point let us replace a(x) and b(z) by power series of the form

m=0
and -
b(w) = bl — o)
m=0
Substituting these into (31) when = = zy we get
2z0(m + 1) a1 + 2m + )m!lay, = Z (7) 2 (cit1(220) am—i + ¢;(220)bp—;) (33)
i=0
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while from (32) we get

m
ml\ _.
22z0(m + 1) by + (2m + 1)ml by, = Z (z') 2" (¢;(2x0)am—i + ¢i—1(230)bm—i) - (34)
i=0 ’
which can be used to recursively generate a,,+1 and by, 1 for m = 0,1,2,... starting from ay = a(zp) and

by = b(xzg) for any xg # 0.
When z = 0 from (33) we get

2m)m!a,, = Z (T) 2! (ci41(0)am—;i + ¢;(0)bp—;) (35)
and from (34) we get
" ml\
(2m + 2)ml by = > (w) 2°(¢i(0)am—i + ci—1(0)bym—;) (36)
i=1 ’

which can be used to recursively generate a,, and b, for m = 1,2,3,... starting from ag = 1 and by = 0.



Appendix - Matrix Equations

Equations (23) and (24) can be written in matrix form as

since

(the matrix is its own inverse).
Equations (27) and (28) can be written in matrix form as

[ty snte) QL | 1T 0 ey | [ )]

which gives us



