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Bessel functions are usually calculated using power series approximations near x = 0 and by the asymp-
totic solutions

J0(x)→
√

2

πx
cos(x− π

4
) (1)

and

J1(x)→
√

2

πx
sin(x− π

4
) (2)

as x→∞. The goal here is to find better approximations over the entire range of x.

Bessel Functions of the First Kind

Bessel functions can be defined as the solution to the second order differential equation

x2J ′′n(x) + xJ ′n(x) + (x2 − n2)Jn(x) = 0 (3)

for any n. We really only need to solve for J0(x) and J1(x) and use the recursion

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x) (4)

and the identity
J−n(x) = (−1)nJn(x) (5)

for n = 1, 2, 3, . . . .
One can convert this second order differential equations to a first order state vector differential equation

where the state vector consists of J0 and J1 by using the identities

J ′0(x) = −J1(x) (6)

and
xJ ′1(x) + J1(x) = xJ0(x) (7)

with initial condition J0(0) = 1 and J1(0) = 0.

Multiple Power Series

Given a power series approximation at x0, one can compute J0(x0 + ∆x) and and J1(x0 + ∆x) for
x0 = 0,∆x, 2∆x, . . . . By storing these values one can re-construct the corresponding power series to
interpolate J0(x) and J1(x) for any x within the appropriate range.

Define power series approximations of the form

J0(x) =

∞∑
m=0

am(x− x0)m (8)

and

J1(x) =

∞∑
m=0

bm(x− x0)m (9)

for some x0. Substituting these series into equation (6) gives us

∞∑
m=1

mam(x− x0)m−1 = −
∞∑

m=0

bm(x− x0)m
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and equivalencing over powers of (x− x0) yields

am = −bm−1/m for m = 1, 2, 3, . . . (10)

starting from a0 = J0(x0).
From equation (7) we can write

(x− x0)J ′1(x) + x0J
′
1(x) + J1(x) = (x− x0)J0(x) + x0J0(x) .

Substituting the power series approximations into this gives us

∞∑
m=0

(m+ 1)bm(x− x0)m + x0

∞∑
m=1

mbm(x− x0)m−1 =

∞∑
m=0

am(x− x0)m+1 + x0

∞∑
m=0

am(x− x0)m (11)

and equivalencing over powers of (x− x0) yields the recursive relationship

bm+1 =
x0am + am−1 − (m+ 1)bm

x0(m+ 1)
for m = 1, 2, 3, . . . (12)

starting from b1 = a0 − b0/x0 and b0 = J1(x0).
When x0 = 0, equation (11) simplifies to

∞∑
m=0

(m+ 1)bmx
m =

∞∑
m=0

amx
m+1

and equivalencing over powers of x gives us

bm = am−1/(m+ 1) for m = 1, 2, 3, . . . (13)

starting from a0 = 1 and b0 = 0. Solving for am and bm recursively using (10) and (13) will produce the
known closed-form solution for the power series coefficients, but it turns out that the recursive solution is
more numerically robust.

Bessel Functions of the Second Kind

These functions are defined as

Yn(x) = (α log x+ β)Jn(x) + x−nfn(x) (14)

where (somewhat arbitrarily) α = 2/π and β = 0.57735− log 2. Inserting this into the identity

Y ′0(x) = −Y1(x)

and using (6) gives us
αJ0(x) + xf ′0(x) = −f1(x) (15)

while the identity
xY ′1(x) + Y1(x) = xY0(x)

and (7) gives us
αJ1(x) + f ′1(x) = xf0(x) (16)

which we will use to solve for f0(x) and f1(x).
Define power series approximations of the form

f0(x) =

∞∑
m=0

cm(x− x0)m (17)
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and

f1(x) =

∞∑
m=0

dm(x− x0)m (18)

for some x0. Substituting (8), (17) and (18) into (15) gives us

α

∞∑
m=0

am(x− x0)m +

∞∑
m=1

mcm(x− x0)m + x0

∞∑
m=1

mcm(x− x0)m−1 = −
∞∑

m=0

dm(x− x0)m

and equivalencing over powers of (x− x0) yields the recursion

cm+1 = −mcm + dm + αam
x0(m+ 1)

for m = 1, 2, 3, . . . (19)

starting from c1 = −(d0+αa0)/x0 and c0 = f0(x0). (We assume am and bm∀m have already been computed.)
When x0 = 0, we instead get

cm = −dm + αam
m

for m = 1, 2, 3, . . . (20)

starting from c0 = 0.
Substituting (9), (17) and (18) into (16) gives us

α

∞∑
m=0

bm(x− x0)m +

∞∑
m=1

mdm(x− x0)m−1 =

∞∑
m=0

cm(x− x0)m+1 + x0

∞∑
m=0

cm(x− x0)m

and equivalencing over powers of (x− x0) yields

dm+1 =
x0cm + cm−1 − αbm

(m+ 1)
for m = 1, 2, 3, . . . (22)

starting from d1 = x0c0 − αb0 and d0 = f1(x0). This also works when x0 = 0, except that we start from
d0 = −α.

Trigonometric Hybrid

Assume a solution of the form

J0(x) = a(x) cos(x) + b(x) sin(x) (23)

and
J1(x) = a(x) sin(x)− b(x) cos(x) (24)

which correspond more closely to the asymptotic solutions. In fact, from (2) and (3) one can show that these
are given by

a(x)→ 1√
πx

and b(x)→ 1√
πx

as x→∞.
The inverse relationship, as derived in the Appendix, can be written as

a(x) = cos(x)J0(x) + sin(x)J1(x) (25)

and
b(x) = sin(x)J0(x)− cos(x)J1(x) . (26)

However, we intend to solve for a(x) and b(x) directly using differential equations starting from a(0) = 1
and b(0) = 0.
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Substituting (23) and (24) into (6) gives us

a′(x) cos(x)− a(x) sin(x) + b′(x) sin(x) + b(x) cos(x) = −a(x) sin(x) + b(x) cos(x)

which simplifies to
a′(x) cos(x) + b′(x) sin(x) = 0 (27)

while substituting (23) and (24) into (7) gives us

x
(
a′(x) sin(x) + a(x) cos(x)− b′(x) cos(x) + b(x) sin(x)

)
+ a(x) sin(x)− b(x) cos(x) = x

(
a(x) cos(x) + b(x) sin(x)

)
which simplifies to

a′(x) sin(x)− b′(x) cos(x) = −a(x)
sin(x)

x
+ b(x)

cos(x)

x
(28)

for x 6= 0. Combining (27) and (28) gives us

2xa′(x) =
(

cos(2x)− 1
)
a(x) + sin(2x)b(x) (29)

and
2xb′(x) = sin(2x)a(x)−

(
cos(2x) + 1

)
b(x) (30)

(derived in the Appendix).
If order to solve for a(x) and b(x) we will equivalence the high order derivatives when x = x0. From (29)

one can show that the mth derivative is given by

2xa(m+1)(x) + (2m+ 1)a(m)(x) =

m∑
i=0

(
m!

i!(m− i)!

)
2i
(
ci+1(2x)a(m−i)(x) + ci(2x)b(m−i)(x)

)
(31)

and from (30) we get

2xb(m+1)(x) + (2m+ 1)b(m)(x) =

m∑
i=0

(
m!

i!(m− i)!

)
2i
(
ci(2x)a(m−i)(x) + ci−1(2x)b(m−i)(x)

)
(32)

for m = 0, 1, 2, . . . where cm(x) is defined as

cm(x) =


sin(x) : m mod 4 = 0
cos(x) : m mod 4 = 1
− sin(x) : m mod 4 = 2
− cos(x) : m mod 4 = 3

.

At this point let us replace a(x) and b(x) by power series of the form

a(x) =

∞∑
m=0

am(x− x0)m

and

b(x) =

∞∑
m=0

bm(x− x0)m .

Substituting these into (31) when x = x0 we get

2x0(m+ 1)! am+1 + (2m+ 1)m! am =

m∑
i=0

(
m!

i!

)
2i
(
ci+1(2x0)am−i + ci(2x0)bm−i

)
(33)
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while from (32) we get

2x0(m+ 1)! bm+1 + (2m+ 1)m! bm =

m∑
i=0

(
m!

i!

)
2i
(
ci(2x0)am−i + ci−1(2x0)bm−i

)
. (34)

which can be used to recursively generate am+1 and bm+1 for m = 0, 1, 2, . . . starting from a0 = a(x0) and
b0 = b(x0) for any x0 6= 0.

When x0 = 0 from (33) we get

(2m)m! am =

m∑
i=1

(
m!

i!

)
2i
(
ci+1(0)am−i + ci(0)bm−i

)
(35)

and from (34) we get

(2m+ 2)m! bm =

m∑
i=1

(
m!

i!

)
2i
(
ci(0)am−i + ci−1(0)bm−i

)
(36)

which can be used to recursively generate am and bm for m = 1, 2, 3, . . . starting from a0 = 1 and b0 = 0.
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Appendix - Matrix Equations

Equations (23) and (24) can be written in matrix form as[
cos(x) sin(x)
sin(x) − cos(x)

] [
a(x)
b(x)

]
=

[
J0(x)
J1(x)

]
which gives us [

a(x)
b(x)

]
=

[
cos(x) sin(x)
sin(x) − cos(x)

] [
J0(x)
J1(x)

]
since [

cos(x) sin(x)
sin(x) − cos(x)

] [
cos(x) sin(x)
sin(x) − cos(x)

]
= I

(the matrix is its own inverse).
Equations (27) and (28) can be written in matrix form as[

cos(x) sin(x)
sin(x) − cos(x)

] [
a′(x)
b′(x)

]
=

1

x

[
0 0

− sin(x) cos(x)

] [
a(x)
b(x)

]
which gives us [

a′(x)
b′(x)

]
=

1

x

[
− sin2(x) cos(x) sin(x)

cos(x) sin(x) − cos2(x)

] [
a(x)
b(x)

]
which can also be written as

2x

[
a′(x)
b′(x)

]
=

[
cos(2x)− 1 sin(2x)

sin(2x) − cos(2x)− 1

] [
a(x)
b(x)

]
.
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