Match the name to the definition.

1. Perpendicular
2. 180°
3. Congruent Polygons
4. Transitive Property of Congruence
5. Bisect (segment)
6. Angle Addition Postulate
7. Bisect (angle)
8. Congruent Segments or Angles
9. Reflexive Property of Congruence
10. Segment Addition Postulate

(A) Lines which intersect at congruent (right) angles.

(B) If $a \cong b$ and $b \cong c$ then $a \cong c$.

(C) All their corresponding angles and sides form congruent pairs.

(D) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.

(E) The measure of a straight angle.

(F) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.

(G) $a \cong a$ (everything is congruent to itself).

(H) Have equal measures.

(I) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.

(J) If B is between A and C then $AB + BC = AC$.
Match the name to the definition.

(1) Reflexive Property of Congruence
(2) Congruent Polygons
(3) Perpendicular
(4) Bisect (segment)
(5) Congruent Segments or Angles
(6) Angle Addition Postulate
(7) Bisect (angle)
(8) Segment Addition Postulate
(9) 180°
(10) Transitive Property of Congruence

(A) If B is between A and C then $AB + BC = AC$.

(B) Have equal measures.

(C) The measure of a straight angle.

(D) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.

(E) All their corresponding angles and sides form congruent pairs.

(F) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.

(G) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.

(H) If $a \cong b$ and $b \cong c$ then $a \cong c$.

(I) Lines which intersect at congruent (right) angles.

(J) $a \cong a$ (everything is congruent to itself).
Match the name to the definition.

(A) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.

(B) Lines which intersect at congruent (right) angles.

(C) Have equal measures.

(D) The measure of a straight angle.

(E) If B is between A and C then $AB + BC = AC$.

(F) All their corresponding angles and sides form congruent pairs.

(G) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.

(H) If $a \cong b$ and $b \cong c$ then $a \cong c$.

(I) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.

(J) $a \cong a$ (everything is congruent to itself).
Match the name to the definition.

(1) Reflexive Property of Congruence
(2) Angle Addition Postulate
(3) Bisect (segment)
(4) Perpendicular
(5) Segment Addition Postulate
(6) Congruent Segments or Angles
(7) Congruent Polygons
(8) 180°
(9) Transitive Property of Congruence
(10) Bisect (angle)

(A) The measure of a straight angle.
(B) \(a \cong a \) (everything is congruent to itself).
(C) If \(B \) is interior to \(\angle APC \) then \(m\angle APB + m\angle BPC = m\angle APC \).
(D) If \(B \) bisects \(\overline{AC} \) then \(\overline{AB} \cong \overline{BC} \).
(E) Have equal measures.
(F) If \(B \) is between \(A \) and \(C \) then \(AB + BC = AC \).
(G) If \(a \cong b \) and \(b \cong c \) then \(a \cong c \).
(H) Lines which intersect at congruent (right) angles.
(I) If \(\overrightarrow{PB} \) bisects \(\angle APC \) then \(\angle APB \cong \angle BPC \).
(J) All their corresponding angles and sides form congruent pairs.
Match the name to the definition.

(A) All their corresponding angles and sides form congruent pairs.
(B) If \(a \cong b \) and \(b \cong c \) then \(a \cong c \).
(C) \(a \cong a \) (everything is congruent to itself).
(D) If \(B \) is interior to \(\angle APC \) then \[m\angle APB + m\angle BPC = m\angle APC. \]
(E) If \(\overrightarrow{PB} \) bisects \(\angle APC \) then \(\angle APB \cong \angle BPC \).
(F) Have equal measures.
(G) If \(B \) bisects \(\overline{AC} \) then \(\overline{AB} \cong \overline{BC} \).
(H) If \(B \) is between \(A \) and \(C \) then \(AB + BC = AC \).
(I) The measure of a straight angle.
(J) Lines which intersect at congruent (right) angles.
Match the name to the definition.

1. \(180^\circ\)
2. Perpendicular
3. Transitive Property of Congruence
4. Reflexive Property of Congruence
5. Angle Addition Postulate
6. Congruent Polygons
7. Segment Addition Postulate
8. Congruent Segments or Angles
9. Bisect (angle)
10. Bisect (segment)

(A) Lines which intersect at congruent (right) angles.
(B) If \(B\) is interior to \(\angle APC\) then \(m\angle APB + m\angle BPC = m\angle APC\).
(C) All their corresponding angles and sides form congruent pairs.
(D) \(a \cong a\) (everything is congruent to itself).
(E) If \(B\) bisects \(\overline{AC}\) then \(\overline{AB} \cong \overline{BC}\).
(F) If \(\overrightarrow{PB}\) bisects \(\angle APC\) then \(\angle APB \cong \angle BPC\).
(G) If \(a \cong b\) and \(b \cong c\) then \(a \cong c\).
(H) If \(B\) is between \(A\) and \(C\) then \(AB + BC = AC\).
(I) Have equal measures.
(J) The measure of a straight angle.
Match the name to the definition.

1. Congruent Polygons
2. 180°
3. Angle Addition Postulate
4. Reflexive Property of Congruence
5. Segment Addition Postulate
6. Congruent Segments or Angles
7. Perpendicular
8. Bisect (segment)
9. Transitive Property of Congruence
10. Bisect (angle)

(A) All their corresponding angles and sides form congruent pairs.
(B) If \(B \) is interior to \(\angle APC \) then \(m\angle APB + m\angle BPC = m\angle APC \).
(C) If \(B \) is between \(A \) and \(C \) then \(AB + BC = AC \).
(D) The measure of a straight angle.
(E) If \(\overrightarrow{PB} \) bisects \(\angle APC \) then \(\angle APB \cong \angle BPC \).
(F) Have equal measures.
(G) If \(B \) bisects \(AC \) then \(AB \cong BC \).
(H) Lines which intersect at congruent (right) angles.
(I) \(a \cong a \) (everything is congruent to itself).
(J) If \(a \cong b \) and \(b \cong c \) then \(a \cong c \).
Batch 5069a733 Properties, Postulates and Definitions Version 8

Match the name to the definition.

(A) $AB + BC = AC$.

(B) $a \cong a$ (everything is congruent to itself).

(C) All their corresponding angles and sides form congruent pairs.

(D) $\angle APB \cong \angle BPC$.

(E) \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.

(F) $m\angle APB + m\angle BPC = m\angle APC$.

(G) Lines which intersect at congruent (right) angles.

(H) Have equal measures.

(I) If $a \cong b$ and $b \cong c$ then $a \cong c$.

(J) The measure of a straight angle.
Match the name to the definition.

(A) If \(a \cong b\) and \(b \cong c\) then \(a \cong c\).

(B) If \(\overrightarrow{PB}\) bisects \(\angle APC\) then
\[\angle APB \cong \angle BPC. \]

(C) Lines which intersect at congruent (right) angles.

(D) All their corresponding angles and sides form congruent pairs.

(E) If \(B\) is interior to \(\angle APC\) then
\[m\angle APB + m\angle BPC = m\angle APC. \]

(F) The measure of a straight angle.

(G) \(a \cong a\) (everything is congruent to itself).

(H) If \(B\) bisects \(\overline{AC}\) then \(\overline{AB} \cong \overline{BC}\).

(I) Have equal measures.

(J) If \(B\) is between \(A\) and \(C\) then
\[AB + BC = AC. \]
Match the name to the definition.

(A) If B is between A and C then $AB + BC = AC$.

(B) If $a \cong b$ and $b \cong c$ then $a \cong c$.

(C) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.

(D) The measure of a straight angle.

(E) All their corresponding angles and sides form congruent pairs.

(F) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.

(G) Lines which intersect at congruent (right) angles.

(H) $a \cong a$ (everything is congruent to itself).

(I) Have equal measures.

(J) If B is interior to $\angle APC$ then $m \angle APB + m \angle BPC = m \angle APC$.
Match the name to the definition.

(A) The measure of a straight angle.
(B) All their corresponding angles and sides form congruent pairs.
(C) Lines which intersect at congruent (right) angles.
(D) If B is between A and C then $AB + BC = AC$.
(E) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.
(F) If $a \cong b$ and $b \cong c$ then $a \cong c$.
(G) Have equal measures.
(H) If B bisects AC then $\overline{AB} \cong \overline{BC}$.
(I) $a \cong a$ (everything is congruent to itself).
(J) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.
Match the name to the definition.

(1) [] Segment Addition Postulate
(2) [] Reflexive Property of Congruence
(3) [] Perpendicular
(4) [] Bisect (segment)
(5) [] Bisect (angle)
(6) [] Congruent Polygons
(7) [] Congruent Segments or Angles
(8) [] Angle Addition Postulate
(9) [] Transitive Property of Congruence
(10) [] 180°

(A) Lines which intersect at congruent (right) angles.
(B) If $a \cong b$ and $b \cong c$ then $a \cong c$.
(C) Have equal measures.
(D) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.
(E) If B is between A and C then $AB + BC = AC$.
(F) All their corresponding angles and sides form congruent pairs.
(G) The measure of a straight angle.
(H) $a \cong a$ (everything is congruent to itself).
(I) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.
(J) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.

A B C

$\overline{AB} \cong \overline{BC}$

$\overline{AP} \cong \overline{PC}$
Match the name to the definition.

(1) □ Congruent Polygons
(2) □ Angle Addition Postulate
(3) □ Perpendicular
(4) □ Congruent Segments or Angles
(5) □ 180°
(6) □ Reflexive Property of Congruence
(7) □ Transitive Property of Congruence
(8) □ Bisect (segment)
(9) □ Segment Addition Postulate
(10) □ Bisect (angle)

(A) Lines which intersect at congruent (right) angles.
(B) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.
(C) Have equal measures.
(D) If $a \cong b$ and $b \cong c$ then $a \cong c$.
(E) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.
(F) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.
(G) All their corresponding angles and sides form congruent pairs.
(H) The measure of a straight angle.
(I) If B is between A and C then $AB + BC = AC$.
(J) $a \cong a$ (everything is congruent to itself).
Match the name to the definition.

(1) 180°
(2) Reflexive Property of Congruence
(3) Congruent Segments or Angles
(4) Angle Addition Postulate
(5) Transitive Property of Congruence
(6) Bisect (angle)
(7) Congruent Polygons
(8) Perpendicular
(9) Segment Addition Postulate
(10) Bisect (segment)

(A) All their corresponding angles and sides form congruent pairs.
(B) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.
(C) Have equal measures.
(D) If B is between A and C then $AB + BC = AC$.
(E) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.
(F) Lines which intersect at congruent (right) angles.
(G) The measure of a straight angle.
(H) If $a \cong b$ and $b \cong c$ then $a \cong c$.
(I) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.
(J) $a \cong a$ (everything is congruent to itself).
Match the name to the definition.

(A) Lines which intersect at congruent (right) angles.

(B) The measure of a straight angle.

(C) If \(B \) is between \(A \) and \(C \) then \(AB + BC = AC \).

(D) If \(B \) bisects \(AC \) then \(AB \cong BC \).

(E) If \(B \) is interior to \(\angle APC \) then \(m\angle APB + m\angle BPC = m\angle APC \).

(F) Have equal measures.

(G) If \(\overrightarrow{PB} \) bisects \(\angle APC \) then \(\angle APB \cong \angle BPC \).

(H) If \(a \cong b \) and \(b \cong c \) then \(a \cong c \).

(I) All their corresponding angles and sides form congruent pairs.

(J) \(a \cong a \) (everything is congruent to itself).
Match the name to the definition.

(A) Have equal measures.

(B) $a \cong a$ (everything is congruent to itself).

(C) If B is between A and C then $AB + BC = AC$.

(D) Lines which intersect at congruent (right) angles.

(E) The measure of a straight angle.

(F) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.

(G) All their corresponding angles and sides form congruent pairs.

(H) If $a \cong b$ and $b \cong c$ then $a \cong c$.

(I) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.

(J) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.
Match the name to the definition.

(A) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.

(B) Have equal measures.

(C) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.

(D) If B is between A and C then $AB + BC = AC$.

(E) If $a \cong b$ and $b \cong c$ then $a \cong c$.

(F) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.

(G) The measure of a straight angle.

(H) Lines which intersect at congruent (right) angles.

(I) $a \cong a$ (everything is congruent to itself).

(J) All their corresponding angles and sides form congruent pairs.
Match the name to the definition.

(A) All their corresponding angles and sides form congruent pairs.

(B) If B is between A and C then $AB + BC = AC$.

(C) $a \cong a$ (everything is congruent to itself).

(D) The measure of a straight angle.

(E) If B bisects AC then $AB \cong BC$.

(F) If $a \cong b$ and $b \cong c$ then $a \cong c$.

(G) Lines which intersect at congruent (right) angles.

(H) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.

(I) Have equal measures.

(J) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.
Batch 5069a733 Properties, Postulates and Definitions Version 19

Match the name to the definition.

(A) Have equal measures.

(B) $a \cong a$ (everything is congruent to itself).

(C) The measure of a straight angle.

(D) If B is between A and C then $AB + BC = AC$.

(E) If $a \cong b$ and $b \cong c$ then $a \cong c$.

(F) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.

(G) All their corresponding angles and sides form congruent pairs.

(H) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.

(I) Lines which intersect at congruent (right) angles.

(J) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.
Match the name to the definition.

\[A \quad B \quad C \]

1. **Congruent Segments or Angles**
2. **Segment Addition Postulate**
3. **Angle Addition Postulate**
4. **Bisect (segment)**
5. **180°**
6. **Transitive Property of Congruence**
7. **Perpendicular**
8. **Reflexive Property of Congruence**
9. **Congruent Polygons**
10. **Bisect (angle)**

(A) If \(B \) is interior to \(\angle APC \) then
 \[m\angle APB + m\angle BPC = m\angle APC. \]

(B) All their corresponding angles and sides form congruent pairs.

(C) Lines which intersect at congruent (right) angles.

(D) If \(a \cong b \) and \(b \cong c \) then \(a \cong c \).

(E) If \(B \) is between \(A \) and \(C \) then
 \[AB + BC = AC. \]

(F) Have equal measures.

(G) The measure of a straight angle.

(H) If \(\overrightarrow{PB} \) bisects \(\angle APC \) then
 \(\angle APB \cong \angle BPC. \)

(I) If \(B \) bisects \(\overrightarrow{AC} \) then \(\overrightarrow{AB} \cong \overrightarrow{BC} \).

(J) \(a \cong a \) (everything is congruent to itself).
Match the name to the definition.

(1) □ 180°

(A) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.

(2) □ Transitive Property of Congruence

(B) All their corresponding angles and sides form congruent pairs.

(3) □ Segment Addition Postulate

(C) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.

(4) □ Bisect (angle)

(D) Lines which intersect at congruent (right) angles.

(5) □ Reflexive Property of Congruence

(E) Have equal measures.

(6) □ Bisect (segment)

(F) The measure of a straight angle.

(7) □ Congruent Segments or Angles

(G) If B is between A and C then $AB + BC = AC$.

(8) □ Angle Addition Postulate

(H) If B bisects AC then $AB \cong BC$.

(9) □ Perpendicular

(I) $a \cong a$ (everything is congruent to itself).

(10) □ Congruent Polygons

(J) If $a \cong b$ and $b \cong c$ then $a \cong c$.
Match the name to the definition.

(A) Lines which intersect at congruent (right) angles.
(B) The measure of a straight angle.
(C) Have equal measures.
(D) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.
(E) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.
(F) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.
(G) $a \cong a$ (everything is congruent to itself).
(H) If B is between A and C then $AB + BC = AC$.
(I) All their corresponding angles and sides form congruent pairs.
(J) If $a \cong b$ and $b \cong c$ then $a \cong c$.
Match the name to the definition.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Segment Addition Postulate</td>
<td>(A) (a \cong a) (everything is congruent to itself).</td>
</tr>
<tr>
<td>2</td>
<td>Bisect (segment)</td>
<td>(B) If (a \cong b) and (b \cong c) then (a \cong c).</td>
</tr>
<tr>
<td>3</td>
<td>180°</td>
<td>(C) Lines which intersect at congruent (right) angles.</td>
</tr>
<tr>
<td>4</td>
<td>Bisect (angle)</td>
<td>(D) If (B) bisects (AC) then (AB \cong BC).</td>
</tr>
<tr>
<td>5</td>
<td>Angle Addition Postulate</td>
<td>(E) If (\overrightarrow{PB}) bisects (\angle APC) then (\angle APB \cong \angle BPC).</td>
</tr>
<tr>
<td>6</td>
<td>Congruent Polygons</td>
<td>(F) If (B) is interior to (\angle APC) then (m\angle APB + m\angle BPC = m\angle APC).</td>
</tr>
<tr>
<td>7</td>
<td>Congruent Segments or Angles</td>
<td>(G) All their corresponding angles and sides form congruent pairs.</td>
</tr>
<tr>
<td>8</td>
<td>Perpendicular</td>
<td>(H) If (B) is between (A) and (C) then (AB + BC = AC).</td>
</tr>
<tr>
<td>9</td>
<td>Reflexive Property of Congruence</td>
<td>(I) Have equal measures.</td>
</tr>
<tr>
<td>10</td>
<td>Transitive Property of Congruence</td>
<td>(J) The measure of a straight angle.</td>
</tr>
</tbody>
</table>
Match the name to the definition.

(1) Transitive Property of Congruence

(2) Bisect (segment)

(3) Congruent Segments or Angles

(4) 180°

(5) Reflexive Property of Congruence

(6) Angle Addition Postulate

(7) Perpendicular

(8) Bisect (angle)

(9) Segment Addition Postulate

(10) Congruent Polygons

(A) $a \cong a$ (everything is congruent to itself).

(B) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.

(C) The measure of a straight angle.

(D) Have equal measures.

(E) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.

(F) If B is between A and C then $AB + BC = AC$.

(G) If $a \cong b$ and $b \cong c$ then $a \cong c$.

(H) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.

(I) All their corresponding angles and sides form congruent pairs.

(J) Lines which intersect at congruent (right) angles.
Match the name to the definition.

(1) **Congruent Segments or Angles**

(2) **Angle Addition Postulate**

(3) **Bisect (segment)**

(4) **Congruent Polygons**

(5) **Transitive Property of Congruence**

(6) **180°**

(7) **Reflexive Property of Congruence**

(8) **Bisect (angle)**

(9) **Perpendicular**

(10) **Segment Addition Postulate**

(A) All their corresponding angles and sides form congruent pairs.

(B) The measure of a straight angle.

(C) $a \cong a$ (everything is congruent to itself).

(D) Have equal measures.

(E) If B is interior to $\angle APC$ then $m\angle APB + m\angle BPC = m\angle APC$.

(F) If \overrightarrow{PB} bisects $\angle APC$ then $\angle APB \cong \angle BPC$.

(G) If $a \cong b$ and $b \cong c$ then $a \cong c$.

(H) If B is between A and C then $AB + BC = AC$.

(I) If B bisects \overline{AC} then $\overline{AB} \cong \overline{BC}$.

(J) Lines which intersect at congruent (right) angles.
<table>
<thead>
<tr>
<th>V. 1</th>
<th>V. 2</th>
<th>V. 3</th>
<th>V. 4</th>
<th>V. 5</th>
<th>V. 6</th>
<th>V. 7</th>
<th>V. 8</th>
<th>V. 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) A</td>
<td>(1) J</td>
<td>(1) H</td>
<td>(1) B</td>
<td>(1) B</td>
<td>(1) J</td>
<td>(1) A</td>
<td>(1) G</td>
<td>(1) I</td>
</tr>
<tr>
<td>(2) E</td>
<td>(2) E</td>
<td>(2) D</td>
<td>(2) C</td>
<td>(2) G</td>
<td>(2) A</td>
<td>(2) D</td>
<td>(2) F</td>
<td>(2) J</td>
</tr>
<tr>
<td>(3) C</td>
<td>(3) I</td>
<td>(3) I</td>
<td>(3) D</td>
<td>(3) I</td>
<td>(3) G</td>
<td>(3) B</td>
<td>(3) B</td>
<td>(3) F</td>
</tr>
<tr>
<td>(9) G</td>
<td>(9) C</td>
<td>(9) F</td>
<td>(9) G</td>
<td>(9) H</td>
<td>(9) F</td>
<td>(9) J</td>
<td>(9) H</td>
<td>(9) H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V. 10</th>
<th>V. 11</th>
<th>V. 12</th>
<th>V. 13</th>
<th>V. 14</th>
<th>V. 15</th>
<th>V. 16</th>
<th>V. 17</th>
<th>V. 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) J</td>
<td>(1) J</td>
<td>(1) E</td>
<td>(1) G</td>
<td>(1) G</td>
<td>(1) B</td>
<td>(1) A</td>
<td>(1) I</td>
<td>(1) H</td>
</tr>
<tr>
<td>(2) E</td>
<td>(2) F</td>
<td>(2) H</td>
<td>(2) E</td>
<td>(2) J</td>
<td>(2) F</td>
<td>(2) E</td>
<td>(2) G</td>
<td>(2) J</td>
</tr>
<tr>
<td>(3) F</td>
<td>(3) I</td>
<td>(3) A</td>
<td>(3) A</td>
<td>(3) C</td>
<td>(3) C</td>
<td>(3) D</td>
<td>(3) F</td>
<td>(3) F</td>
</tr>
<tr>
<td>(9) C</td>
<td>(9) A</td>
<td>(9) B</td>
<td>(9) I</td>
<td>(9) D</td>
<td>(9) A</td>
<td>(9) F</td>
<td>(9) B</td>
<td>(9) A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V. 19</th>
<th>V. 20</th>
<th>V. 21</th>
<th>V. 22</th>
<th>V. 23</th>
<th>V. 24</th>
<th>V. 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) D</td>
<td>(1) F</td>
<td>(1) F</td>
<td>(1) C</td>
<td>(1) H</td>
<td>(1) G</td>
<td>(1) D</td>
</tr>
<tr>
<td>(2) C</td>
<td>(2) E</td>
<td>(2) J</td>
<td>(2) G</td>
<td>(2) D</td>
<td>(2) E</td>
<td>(2) E</td>
</tr>
<tr>
<td>(3) H</td>
<td>(3) A</td>
<td>(3) G</td>
<td>(3) I</td>
<td>(3) J</td>
<td>(3) D</td>
<td>(3) I</td>
</tr>
<tr>
<td>(4) J</td>
<td>(4) I</td>
<td>(4) A</td>
<td>(4) D</td>
<td>(4) E</td>
<td>(4) C</td>
<td>(4) A</td>
</tr>
<tr>
<td>(7) F</td>
<td>(7) C</td>
<td>(7) E</td>
<td>(7) J</td>
<td>(7) I</td>
<td>(7) J</td>
<td>(7) C</td>
</tr>
<tr>
<td>(9) E</td>
<td>(9) B</td>
<td>(9) D</td>
<td>(9) F</td>
<td>(9) A</td>
<td>(9) F</td>
<td>(9) J</td>
</tr>
<tr>
<td>(10) I</td>
<td>(10) H</td>
<td>(10) B</td>
<td>(10) H</td>
<td>(10) B</td>
<td>(10) I</td>
<td>(10) H</td>
</tr>
</tbody>
</table>