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The idea is to intermix tubes (holes in a metal matrix) containing two separate fluids as
closely as possible. Applications include heat exchangers and burners. The advent of 3D
printing technology is what makes these designs practical.

The border of a fractal is infinite in length, although the practical limit is determined by
the resolution of the 3D printer. For a heat exchanger, each layer increases the surface area
by a factor of

√
5 (Cartesian grid) or by

√
3 (hexagonal grid). For a burner, the smaller the

grid spacing the faster the two fluids will mix.

The last rocket engine using a grid burner was the F1 engine, which was subject to a
rather extreme problem with combustion instability. The solution consisted of dividing the
pressure plate into an inner disk and and outer ring, and rotating the two relative to each
other. This would indicate that the combustion instability is directional along the grid lines.

For comparison, the shuttle engines used two “shower heads” aimed at each other, and
the Merlin engine combines thin layers of RP1 and LOX moving radially outward.

According to Barlow’s formula for the maximum pressure for cylindrical pipes,

P =
2σis

Dm

where P is pressure, σi is allowable stress, s is the wall thickness and Dm is the outside
diameter. So long as the wall thickness and tube diameter remain proportional, the strength
of the tubes in different layers will remain the same.

Cartesian Grid

Consider a regular grid of tubes containing two fluids, marked as red and blue. Each red
tube is surrounded by four blue tubes, and each blue tube is surrounded by four red tubes,
except at the edges.

In the next layer, five of these tubes are connected together in a regular pattern (2 right
to 1 down or 2 up to 1 right to change colors, 3 right to 1 up or 3 up to 1 left for same
color). This and its mirror image are the only such patterns possible. Note that every dot
is connected, excepting some of those at the edge of the grid.

The centers of the tubes are separated by 0.707 (
√
2/2) times the grid spacing, s. In this

diagram, we used a tube radius of 0.3s, leaving about 0.107s separation between the tube
edges.



The centers of the connected tubes also form a regular grid, although rotated by about
−26.6◦ (tan−1−1/2). Also, since five tubes are feeding into one, we assume the diameter of
the tubes will increase by

√
5, as does the grid spacing. Again, one can connect the tubes

together using the same (but rotated) pattern.

However, something needs to be done at the edges. If you start with a simple grid of 4
tubes and go three layers deep (large to small), the resulting pattern will have large areas
with nothing but tubes of one color, not to mention the lacy edges (typical of fractals). Even
the useful area forms an irregular (fractal) shape.

The good news is that at the edges one can move the ends of the tubes to better locations.



The first rule is to never connect to the next layer if the location isn’t adjacent to at least
2 tubes of the other color. The second rule is to always fill locations adjacent to 3 or more
tubes of the same color.

An even more useful tool is to “split” a tube so that it connects to the next layer at
more than one location. This includes reducing the tube diameter for the lower flow rate
and making sure the that 1 to 5 expansion rate is maintained (eventually). Typically this
means splitting into 3/5 and 2/5 (by area) tubes.

It is analogous to using both sides of a printed circuit board. The resulting paths are
generally shorted and topologically simpler. The main limitation is that you can’t do this
on the last layer, as all the tubes have to have the same diameter at that point.

Split tubes should only be used on the outer edge, and are usually used in locations
adjacent to only 2 tubes of the other color. Ultimately, a certain amount of trial and error
is required, especially when deciding which connections gets the 3/5 and which gets 2/5.

Starting from a 2 × 2 grid always produces lumpy edges. There are too many internal
gaps and it is topologically impossible to fill them all. One lesson learned during these
experiments was that it is better tho alternate between ±25.6◦ than to always rotate in the
same direction.

The following example starts with a 3× 3 grid. The problem with this is that, as shown,
one starts with five red tubes and four blue tubes. The can be corrected by throwing away
the outermost four red tubes on each layer, reducing the red/blue ratio to 21/20, 101/100,
501/500 and so on. Admittedly this violates self-symmetry (at least near the edges) and
gives some of the tubes more area than needed.

The white circles mark where splits are used, showing the diameter of the connection
to the next layer. Note that the only locations which are adjacent to only two dots of the
other color are the split blue tubes. This can act as a guide to where splits are needed, but
ultimately it is about improving paths on the next level.



The fourth level is treated as the last level, so no splits were performed. While the four
red dots that were dropped on the second and third levels came from the main diagonals,
the last set came from the north, east, south and west corners.

The outer circles are simply to provide a reference for the size and shape of the patterns
produced.

Hexagonal Grid

In this grid each blue dot is surrounded by 3 red dots and vice verses. While combustion
is aligned along 3 directions (30◦, 90◦ and 150◦), there is a gap between the combustion zones
in any direction, which should reduce the problem with combustion instability.

In the next layer three of these tubes are connected together. Unlike the Cartesian grid,
the centers are not located on top of a dot. The center-to-center distance between tubes is
about 0.866s (

√
3/2) where s is the spacing between dots of different colors. This diagram

used a radius of 0.35s leaving about a 0.166s gap between tubes. The centers form another
hexagonal grid rotated by ±30◦. The radius and grid spacing both increase by

√
3, so self-

symmetry is maintained. As before, it is often useful to split off a tube fragment, so long as
the 1 to 3 expansion is maintained.



Starting from a hexagon, the first four layers are shown below. Note that all of them
remain roughly hexagonal.
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It appears that the split tubes are only used in every other layer. While they have to be
near an edge to work, not all tubes near an edge use them. The critical criterion is that they
have to be near a nearly completed hexagon.

Junctions between Layers

I suspect there are CAD-CAM packages which do this sort of thing, but not having access
one I decided to do the math myself. In particular, there isn’t enough room to fit a 0.3

√
5s

or 0.35
√
3s radius tube all the way through where the five or three tubes join. What we

need is the smallest tube which can handle the flow.

The net flow from a horizontal cylinder added at any depth z is proportional to the
cumulative area of a circle from bottom to top, which is given by∫ z

−r

2
√
r2 − x2 dx = r2

∫ sin−1(z/r)

−π/2

2 cos2 θ dθ = r2
[
θ +

sin 2θ

2

]sin−1(z/r)

−π/2

which is easier to handle parametrically with z = r sin θ. At the junction of five tubes
(Cartesian grid) the minimum radius R(z) needed to handle the flow is given by:

R(z) = r

√
1 + 4

(
θ

π
+

1

2
+

sin 2θ

2π

) ∣∣∣∣∣
θ=sin−1(z/r)



where z = 0 at the centers of the horizontal tubes.

The profile of this junction is shown below. The blue lines show the intersections with
two connecting tubes, showing that the tubes never touch each other directly. The red line
shows the closest approach to the other color, assuming r = 0.3s.
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R(z)/r with 38◦ Slope

Using sloping tubes makes it easier to drain the unit and increases the minimum distance
from the junction to the nearest tube of the other color. However sloping tubes add more
fluid for a given value of z.

From the point where z intercepts the tube to radius R(z) is an arch through which fluid
is rising at slope angle ϕ. Projecting that arch perpendicular to the flow foreshortens it by
sinϕ. The radius must satisfy the set of equations

πR2(θ) = πr2 + 4r2
(
θ +

π

2
+

sin 2θ

2

)
+ 4R2(θ)

(
α− sin 2α

2

)
sinϕ

R(θ) sinα = r cos θ

for some unknown α This has no closed form solution, but can be with successive approxi-
mations.

The intersection can be modeled parametrically using

z(θ) = r sin θ secϕ−
(√

R2(θ)− r2 cos2 θ −
√
R2(0)− r2

)
tanϕ

for slope angle ϕ. The secϕ term is the projection of the cylinder onto a vertical plane, the
tanϕ term is the change due to the varying radius (using Pythagoras) and the

√
R2(0)− r2)

term forces z(0) = 0. Also, R(0) >
√
3 r and needs to be precomputed.



The largest possible slope can be found using

ϕ = sin−1

(√
5− 1

2

)
≈ 38.2◦

and the vertical distance for the tube centers from the start to end is given by

∆z = (s−R(0)) tanϕ

which is constant across the layer. Technically, one could use any slope and change the angle
when you reach the junction.

At the junction of three tubes (hexagonal grid) the minimum radius R(z) is given by

R(z) = r

√
3

(
θ

π
+

1

2
+

sin 2θ

2π

) ∣∣∣∣∣
θ=sin−1(z/r)

which is shown below.
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R(z)/r with 60◦ Slope

This time, the horizontal tubes will intersect each other, even at 120◦ apart. It is better
to use the ellipsoid

R(z) =
2√
3
r cos θ

∣∣∣∣
θ=sin−1(z/r)

shown in green. This shape will intersect the tubes at precisely the same point they intersect
each other, since R(θ) sin 60◦ = r cos θ. More than just a conceptual aid, it makes the math
simpler.

Adding slope causes a dimple at the bottom, violating the model of a contiguous column
of fluid. At the very least, one needs to handle the outer and inner surfaces separately. An



outer surface using

R(z) = r

√
1

3
+ cos2 θ

∣∣∣∣∣
θ=sin−1(z/r)

will guarantee that dz/dθ ≥ 0 for −90◦ ≤ θ ≤ 0 for any slope ϕ ≥ 0, since

z = r sin θ secϕ−
(

r√
3
−
√

R2(0)− r2
)
tanϕ

when using the new shape.

The largest possible slope the junction can handle is given by

ϕ = sin−1
(√

3/2
)
= 60◦ .

One can use the minimum radius (area) calculations to determine the maximum size of an
inner surface (dimple), but streamlining is outside the scope of this paper.

Final Notes

For a heat exchanger, the last layer should expand the radius by
√
2 or 2/

√
3 to increase the

surface area and maintain the thickness/diameter ratio. It would probably be best to divide
the exchanger into three sections, with a fractal manifold on each end and a variable length
section with constant radius tubes in the middle.

A burner should end with expansion cones to minimize the contact between the flame
and metal walls. I doubt one would need additional turbulence.


